Seminar in
Cognitive
Modelling

Lecture 5 - Model
Evaluation

Neil Bramley



 Semester 1: Tour of cognitive modelling topics approaches themes and
perspectives

e Semester 2: Your turn...but also...

e ...INncreasing emphasis on critiquing the role of formal modeling in
advancing science



 "All models are wrong, but some are useful”
— George Box

l.e. they are inductive, abstractions
bound to predict/explain their target less than
perfectly (else just a clone/replica)

* More expansively: “Since all models are wrong, the scientist
must be alert to what is importantly wrong. It is inappropriate to

be concerned about mice when there are tigers abroad” (Box,

e How can we, should we, do we use models in our scientific
endeavours?



Replication Crisis

e Since ~2010, Psychology research (& other areas inc. medicine)

IN “crisis” — many ostensibly “established” results are proving
non-reproducible

* e.g. 36/100 Psychology classic studies replicated, effect
sizes 40+0.18% of original

 Are we doing science right?



Effects In search of theory

* Non-replicable effects tend to lack a formalizable theory:

 “Power posing will make you act bolder”
— Why”? How much? In what circumstances?

o “Exposure to words pertaining to ageing will make you walk
more slowly” - What is the mechanism? What
other predictions would this mechanism make if it were true?

FIiEZER Y UDKOWSKY

* Pre-cognition “predicting stimuli from the future”

& Extra-Sensory Perception - https://hpmor.com/
Supernatural mechanisms, precluding systematic theorising



Open Science Movement 1.0

 Push toward making Open Science practices the default/norm e.qg.:

$ 20SF

* Pre-registration — publishing plan for experiments and analyses
ahead of running them

* Including data & code with journal submissions

e Using Bayesian statistics

PREREGISTERED

 (Goal: guard against Questionable Research Practices e.g.:
 HARK-ing: Hypothesising After Results are Known om i

 P-hacking: making multiple comparisons or stopping decisions to
force significance from statistical tests. Selective reporting/file
drawer effect etc




Open Science Movement 2.0

But is this enough?

 How much does pre-registation & open-sourcing fix?

| | , . How to
* Arguably, even easier to be bad-faith-Bayesian than frequentist... Lie

with
Statistics

& what is wrong with theorising being inspired by data” =

& 9
; : T L S
* |sn’t science “inherently post hoc”? Darrell Huff

‘Mo levant than ever’ Bill Gates

 Perhaps issue is not just only at the “statistical analysis of data” level!

 Need to improve the quality & rigour of our theorising



How computational modeling can force theory building in psychological

SCIENCE
Olivia Guest Andrea E. Martin
Research Centre on Interactive Media, Smart Systems and Max Planck Institute for Psycholinguistics,
Emerging Technologies — RISE, Niymegen, The Netherlands &
Nicosia, Cyprus & Donders Centre for Cognitive Neuroimaging, Radboud
Department of Experimental Psychology, University,
UCL, UK Niymegen, The Netherlands

Psychology endeavors to develop theories of human capacities and behaviors based on a variety
of methodologies and dependent measures. We argue that one of the most divisive factors in
our field is whether researchers choose to employ computational modeling of theories (over and
above data) during the scientific inference process. Modeling is undervalued, yet holds prom-
ise for advancing psychological science. The inherent demands of computational modeling

guide us towards better science by forcing us to conceptually analyze, specify, and formalise
intuitions which otherwise remain unexamined — what we dub “open theory”. Constraining

our inference process through modeling enables us to build explanatory and predictive theor-
ies. Herein, we present scientific inference in psychology as a path function, where each step
shapes the next. Computational modeling can constrain these steps, thus advancing scientific
inference over and above stewardship of experimental practice (e.g., preregistration). If psy-
chology continues to eschew computational modeling, we predict more replicability “crises”
and persistent failure at coherent theory-building. This is because without formal modeling we
lack open and transparent theorising. We also explain how to formalise, specify. and imple-




Computational modelling as Open Theorising

1. Formal modelling makes explicit the pathway linking theories to evidence

2. Path constrains succession of conceptual moves from theory to experiment
(guides what hypotheses to test, experiments to run, what to do with the results),
facilitating progressive alignment of theories with reality

3. Lots of important science goes as we articulate, run & refine computational models

4. Skipping these steps risks burying inconsistencies, mistaking impact of evidence,
motivated reasoning, leads to unfalsifiable theories & undermines progress

5. Therefore we should formalise our theories with models, to allow for explicit Open

Theorisin
9 fwiw, | think this argument applies as much to theory

development in Al as in Psychology



For us

 Guest & Martin’s analysis a helpful framework for analysing
role of models in papers (i.e. in essays & presentations, own
research)

* |.e. What scientific purpose does their formal modelling
exercise serve?

 What do they learned along the way?

 What mistaken inferences might have occurred without the
formalizing?

e \What sins occur nonetheless?



The account:

Scientific enquiry analysed as a path function* connecting
framework/theory to data

Theory must pass through several states to gain explanatory
force wrt Data

Data must pass through same states in reverse to yield
confirmatory/falsificatory force wrt a Theory

Function expresses series of constraints on mappings (working
downward), which then guides data-driven adjustment to
content at each level (working upward)

Formalisability of a scientific research programme in this
way determines its coherence hence its explanatory force
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Eramewerk

iheony,

Specification

Implementation -

Hypothesis

Data



Eramewolik

The account:

 *path function - Output depends on path of transformations the
iInput undergoes

* Distinct from more familiar state function, e.g.

Specification
State function: distance(Delhi, Lucknow) -> 480km
Path function: travel_time(Delhi, Lucknow) -> Pick route, pick |
mode of transport, derive time Implementation ---
Delhi
£(#80 km) Hypothesis

Lucknow

Data



Eramewolik

The account:

* |In practice this depends on:

1. How Theory is Specified

2. How Specification is Implemented

3. How Implementation is mapped to a Hypothesis

4. And how Hypothesis is tested against Data

We're going to need a biger rug !

\

Data



Eramewoik

Framework

£

iheony

Our meta-theoretical commitments e.g.:
Connectionism:

* Parallel processing Specification

e Distributed representations

Only testable extremely indirectly,

Bayesian cognitive models (/FEP if you _
beyond scope of a single paper

prefer): Implementation

 Hypothesis space
* Prior beliefs Hypothesis
 Bayesian updating

Determines what theories we generate /
entertain

Y N Y/ Y

Data



Eramewo ik

Theory

® “a scientific proposition — described by a collection of
natural language sentences, mathematics, logic, and

iheony

figures” L
Live within some
* Prospect Theory (Kahneman, Tversky) framework but this often
» Rescorla Wagner Theory (of conditioning) (R&W) left implicit Specification
 Dual Process Theory (Evans, K & T)
N N

* Causal Model Theory (Rehder, Holyoak, Waldmann) =
 SUSTAIN Theory (of concepts) (Love, Gureckis)

* (linguistic) Optimality Theory (Prince, Smolensky) Implementation ---

* Evolutionary Theory (Darwin, Wallace) Bad scientific discourse
e Control Theory (Wiener, Kalman) level skips, leaving

, , . relationship between Data |
* Behaviourism (Skinner, Watson) & Theories implicit at best, Hypothesis

but more likely opaque or
vague or false

o Stages Theory (of development) (Piaget)
 Theory Theory (of development) (Carey, Gopnik)

* The Hierarchy of Needs (Maslow) % Data
e Attachment Theory (Bowlby, Ainsworth)

Y YO Y/ Y



Specification

liheony

 Must capture the core assumptions of the

model
Specification
* |If implementation does not meet these

requirements then it cannot be
considered a valid implementation of the

theory }
PR

» Multiple potentially equally valid formal .
languages (equations, diagram, Hypothesis
psuedocode, [perfectly unambiguous]

natural language)
O Data
&

Implementation ---



Implementation

* “In psychology, creating an implementation typically
Involves taking the specification implicitly embedded in a
journal article and writing code that is faithful to it.”

e Auxiliary Assumptions

* Insignificant commitments (e.g. written in Python) /\ |

 Mutable commitments (e.g. noise is Gaussian) %

“Without specifications we cannot debug our

Implementations, and we cannot properly test our
theories™

If an implementation detail proves pivotal to what a

model predicts, it must be upgraded to a specification
detall

Erameweo ik

liheony

Specilfication

Implementation ---

Hypothesis

Data



Hypothesis

“A narrow, testable statement... in psychology focus on properties of the world that
can be measured and evaluated by collecting data and running inferential statistics”

Prevalence

e X occurs greater than chance

RelatiOnShip Or perhaps:
_ _ , “Model A is more likely than Model B”*
e XIs associated with Y
* e.g. Has higher complexity-penalised
likelihood of producing data; lower cross
validation error, smaller BIC etc

Causality
e X precedesY
e X is sufficient to cause Y
« XIS necessary to cause Y

“Running our computational model’s code, allows us to generate hypotheses. For
example, if our model behaves in a certain way in a given task, e.q., it has trouble
categorising some types of visual stimuli more than others, we can formulate a
hypothesis to test this.”

Eramewo ik

liheony

Specification

A7 g

mplementation

o aBa

Hypothesis

Data



Data

e Observations

e Simulations
 EXxperiments

 Regardless, data are not theory-neutral %

 Measured/represented/encoded for some purpose, couched in
some theoretical commitments, i.e. in order to test a hypotheses

* Their semantics are dependent on supporting theory
 fMRI assumes link between blood-oxygenation & activation

* behavioural responses depend on assumptions about
participant’s perceptions, motor control, motivations, task

understanding, correctly functioning software etc

Eramewo ik

liheony

Specification

Implementation

Hypothesis

£

Data



Is “Iwo 12 Iinch pizzas for the price of one 18 Iinch
pizza’ a good deal?

“ramework - Goncepts of ‘pizza’, ‘food’, ‘order’

T, To: ‘number of pizzas corresponds to amount of pizza’ initial/naive
2o
) T1: ‘the surface areas of the pizzas per order correspond to the amount of pizza’ posthoc/corrected

N
2 :
‘o . . ]T]?. }mport numpy as np
SpeCHclcaJ“On ¢l ; J import math

def food(ds):

of the diameters per pizza (eq. 3).

urn (math.pi * (ds/2)**2).sum()

Implementation ----

# Order option a in fig. 1, two 12’’ pizzas:
tWo pizzas = np.array(ll2, 121}])

Ho: ‘two pizzas is more pizza than one pizza’
Hypothesis -+ H4: ‘an 18 inch pizza is more pizza than two 12 inch pizzas’

Y Y Y Y

D Weigh pizzas expectation violation!
ata -




Summing up Guest & Martin

o By specifying, implementing and deriving hypotheses from theory, a
research program becomes robust to the inevitable expectation violations

e path provides multiple locations to adjust
 Without, can only discard theory or ignore result
o “Mathematically specifying and/or computationally implementing models,

for example, can demonstrate that accounts are identical or overlap even
when their verbal descriptions (i.e., informal specifications) are seemingly

divergent.”



Examples of revelations from formalisations

Psychological Review @ 2013 American Psychological Association
2014, Vol. 121, No. 1, 1-32 0033-205X/14/312.00 DOI: 10.1037/0034190

Unfalsifiability and Mutual Translatability of Major Modeling Schemes for
Choice Reaction Time

Matt Jones Ehtibar N. Dzhafarov

University of Colorado, Boulder Purdue University

e.g. modelling reveals several diffusion-based
theories of choice are identical or unfalsifiable

The Tractable Cognition Thesis

Iris van Rooij
Nijmegen Institute for Cognition and Information, Radboud University Nijmegen

Received 7 May 2007; received in revised form 26 November 2007; accepted 12 December 2007

& that various well known cognitive models are
formally intractable




Successful modelling facilitates “open theorising”

 Complementary to other forms of “Open Science”

 Makes the commitments of theories explicit & distinguishes them from
Incidental implementational choices made while testing them

* “More data—however open, will never solve the issue of a lack of formal

theorising. Data cannot tell a scientific story, that role falls to theory and
theory needs formalisation to be evaluated”



Relationship with Marr’s levels of analysis?

o Similar in that it captures role of bidirectional constraints in driving
scientific workflow:

 Downward: Articulating [Computational problem/Theory] to be solved
constrains [Algorithms/Experiments] to those that can [solve it/test it]

 Upward: Observing [Brain/Data] constrains what [algorithms are in play/
hypotheses are borne out], these in turn help reveal what [problem is
being tackled by system/theory is true of system]



Optimising scientific experimentation?

* Theory of Optimal Experimental Design Active Learning

 Having formalised a set of models (or model with unknown parameters) can
also formally derive the most efficient way to resolve uncertainty wrt them

Psychological Review © 2009 American Psychological Association
2009, Vol. 116, No. 3, 499-518 0033-295X/09/§12.00 DOI: 10.1037/a0016104

D
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Optimal Experimental Design for Model Discrimination

Jay I. Myung and Mark A. Pitt DeSigning optimal behavioral

Bl L o ©
Ohio State University experiments using machine learning
Simon Valentin'*", Steven Kleinegesse'!, Neil R Bramley?, Peggy Seriés’,
Models of a psychological process can be difficult to discriminate experimentally because it is not easy Michael U Gutmann’, Christopher G Lucas'
to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure)
that will be most informative in differentiating them. Recent developments in sampling-based search 'School of Informatics, University of Edinburgh, Edinburgh, United Kingdom;
methods in statistics make it possible to determine these values and thereby identify an optimal zDepartment of Psychology, University of Edinburgh, Edinburgh, United Kingdom

experimental design. After describing the method, it is demonstrated in 2 content areas in cognitive

psychology in which models are highly competitive: retention (i.e., forgetting) and categorization. The
optimal design is compared with the quality of designs used in the literature. The findings demonstrate

. . . . : : m ional models ar rful tools for understanding human nition an
that design optimization has the potential to increase the informativeness of the experimental method. Compaitational mociets ana powesii Tooss for indarstanding insman cogaition snd

behavior. They let us express our theories clearly and precisely and offer predictions that can be
subtle and often counter-intuitive. However, this same richness and ability to surprise means our
scientific intuitions and traditional tools are ill-suited to designing experiments to test and compare
these models. To avoid these pitfalls and realize the full potential of computational modeling, we
L —— T — require tools to design experiments that provide clear answers about what models explain human
behavior and the auxiliary assumptions those models must make. Bayesian optimal experimental
design (BOED) formalizes the search for optimal experimental designs by identifying experiments
that are expected to yield informative data. In this work, we provide a tutorial on leveraging recent
advances in BOED and machine learnina to find optimal exoeriments for anv kind of model that we

Keywords: formal modeling, model discrimination, Markov chain Monte Carlo, retention, categorization




Break here?

Questions etc?



High level model evaluation

* van Rooij & Blokpoel (2020) characterises models development as Socratic dialog
between Verbal and Formal

* Highlights how the act of formalising reveals various pressure points

E’d like to explain how a host decides whom to invite to a party

'\ n .
\Why would the host not invite everybody?

il'hey may like some people but dislike others.

CThen the host invites everybody they like? SELECTING INVITEES (VERSION 1)

J\

" Not all people get along. If people get into an argument that can Input: A set of people P, some of whom the host likes

Qgpoil a party. ) (L C P) and some of whom the host dislikes (D C P),
q —— : ~ with L "D =0 and L U D = P, and a function like:

see. So a host may choose to invite people they like and that all P x P — f{true, false} specifying for each pair of per-
@et along. y sons (p;, p;) € P whether or not they like each other.

Output: A set of liked guests G C L that all like

4 )
Yes, that sounds right. | think that’s what a host will tend to do. Can O
each other (i.e., like(p;, p;) = true for each p;, p; € G).

Xve formalise this idea?

J




High level model evaluation

A B

| would not think so

-

e {alse
E D
a ™
Qf course in that situation the host would invite {C, D, E, F} )
( . )
&)r they would invite {A, B} )
e A
Y,
p

%ut according to Version 1 of the model, subset {A, B} is as likely to be the selected
invitees as {C, D, E, F}, or at least there is no reason why the host would select the one

end not the other.

-
Eut a party with only two guests is not much of a party!

60 there are more constraints on the subset of guests that you have in mind but did
Qot tell me yet. The host wants to have at least 3 guests?

(- . .
@s many as possible, the more the merrier.

. VALY A4 WY AR

@K. Here’s an adjusted version of the model:

SELECTING INVITEES (VERSION 2)

Input: A set P, subsets L C P and D C P with
LND=0and L UD =P, and a function like: P x P
— {true, false}.

Qutput: A subset G C L such that

Vp.peclike(p;,p;) = true and the size of G is maxi-
mized (1.e., there exists no G such that
Vpp,cclike(p;, p;) = true and |G| > |G]).




Personally relevant example

Despite recent progress in artificial
intelligence...

...still lacks human level
competency or flexibility in basic
interactions with physical world

Theory: Humans learn internal “intuitive physics” engine + use this to reason robustly through
mental simulation (Battaglia et al, 2013; Smith & Vul, 2013; Tenenbaum et al, 2011; Unman et al,
2017)

|.e. rather like a game engine, embodying Newtonian physical
laws...
mm, 2m,

d? 2 m; + m2 "1 et

F=G

...and latent parameters (masses, forces, friction, elasticity)?
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Personally relevant example

L)

Check for
updates

Simulation as an engine of physical
scene understanding

Peter W. Battaglia', Jessica B. Hamrick, and Joshua B. Tenenbaum

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved September 20, 2013 (received for review April 8, 2013)

very simple, idealized cases, much closer to the examples of in-

In a glance, we can perceive whether a stack of dishes will topple,
troductory physics classes than to the physical contexts people face

—1

a branch will support a child’s weight, a grocery bag is poorly packed

A w1 |nputs === 2. |ntuitive Physics Engine == 3. Outputs

B C

Probabilistic IPE
I
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i

-
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semeliE Wil it fall?
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Fall —»

. 8/10
Shd -

Which direction?

©
B

Jr

Human (1-7, normalized)
o
o)
e

o
N

.I_
".+i‘i* U Fall —» |

D Ground-truth physics

Fall —»
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Model (avg. proportion fallen)




Personally relevant example

 Jo implement this theory, Battaglia et al assume
learners integrate over uncertainty (e.qg.

perceptual / latent properties) by running many X " -
slightly different simulations in parallel (i.e. Monte o / ;-) AE
Carlo integration) '\@

* Necessary to derive their experimental
predictions but seemingly incompatible with other S (6 ‘@é{q
behavioural phenomena... — X



Personally relevant example

* All objects must be consistently represented, simulated in synchrony and outcomes
aggregated over independent simulations

 But showed people systematically violate all three model features

How likely is it that 0%
the pink sphere will

GRASS?

the cannonball will

an nen the pin
sphere will end up
Fig. 5. A “marble run"-type question as it appeared to participants. The play button indicates an embedded vid on the GRASS?




Personally relevant example

Tomer Ullman

Original theorizers rise to our challenge

a n d adj U St a n d refi n e t h e i r t h eO ry Of : ggsz:;hsi::r-ti)n(g:iu:her from hole center -> CF ¥

Tomer Ullman

mental simulation 8 o

Beyond (nice) correlations, model explains: Why CF is of particular
magnitude; why it shows only in some scenarios; why it goes in one
direction; why it depends linearly on trajectory of one object, and

%{ Routledge
quadratically on position of other.

Taylor & Francis Group

Rl ML
- Cognitive Neuropsychology

Participants Participant-Model Comparison

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/pcgn20

c
o
- N
0 0
c o
S =
Te
<)
(&)

Partial mental simulation explains fallacies in
physical reasoning

llona Bass, Kevin A. Smith, Elizabeth Bonawitz & Tomer D. Ullman

To cite this article: llona Bass, Kevin A. Smith, Elizabeth Bonawitz & Tomer D. Uliman (2022):
Partial mental simulation explains fallacies in physical reasoning, Cognitive Neuropsychology, DOI:
10.1080/02643294.2022.2083950

To link to this article: https://doi.org/10.1080/02643294.2022.2083950

Progress achieved!

1 2

Starting position




Explanation vs Fit

» A tight fit between data and a model not always what we care about
e Can be due to the flexibility of a model (Myung)

e Heuristics for penalising model fit (i.e. parameter counting in BIC/AIC) can
be pushed to failure...

05 0.5
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- e
- .
- [ ] L ] ® -
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FIG. 1: A scatter plot of fy for 8 = 0.2446847266734745458227540656 - - - plotted at integer x values,
showing that a single parameter can fit an elephant (left). The same model run with parameter § =
0.0024265418055000401935387620 - - - showing a fit of a scatter plot to Joan Mird’s signature (right). Both

use r = 8 and require hundreds to thousands of digits of precision in 6.



Explanation vs Fit

 “Between the devil and the deep blue sea” . Beyond question of over- or under-fitting,
there is the question of what we care about, different objective functions reflect different values:

A

Maximum Likelihood Estimation P(X | M, 6A’) where 0 = argmaXHH L (x| M, 0)— How well can the

xXeXx
model do when given its best shot

» Bayes factors driven by prior predictive distribution P(x | M)— Does model capture the phenomenon
averaging over prior on possible values of params

» Cross validation closer to posterior predictive P(X’'| X, M) — Does the model, once fit to some
observations, capture other/future observations?

* Correlations more about matching qualitative patterns

* Navarro gives example of experiments on “sensitivity to sampling” where she agonises over the most
appropriate scientific objective...



Explanation vs Fit

Narrower generalisation of novel properties from learning samples selected because they had that property
than because they belonged to same category (category sampling).”

E1: Negative Evidence E2: Sample Size E4: Base Rate
1.00 -
0.75-
-
®
£ 0.50-
-
I
0.25-
r=0.945 r=0.908 r=0.916
0.004.

Model

0.00 025 050 0.75 1.0M.00 025 050 0.75 1.00.00 025 050 0.75 1.00

sampling
® Category

A Property

condition
C- Rare

C- Common

N=2

N=6

N=12

Positive Only
Positive & Negative



Property Generalization

Explanation vs Fit

“[...] Some choices (e.g. how smooth is an unknown generalisation function?) can be instantiated as model parameters, but
others (e.g. what class of functions is admissible to describe human generalisation?) not so simple....

E1: Neg Ev (Cat)

E1: Neg Ev (Pro)

E2: SS (Cat)

E2: SS (Pro)

E4: BR (Cat)

E4: BR (Pro)

1.004

0754
0.504--
0.254 :

0.004

1.004

0754 |

0.50

0.254

0.004 : : : . : .
S1 S2 S3 S4 S5 S6S1 S2 S3 S4 S5 S6515253 545556 S7 515253545556 S7 515253 54555657 S15253 545556 S7

.....................

...................

....................

.....................

u

B L T

...................

....................

....................

....................

Test Stimulus

Therefore, they elect to put little weight on
quantitative measure of fit
Instead derive ordinal constraints from

sampling behavioural data a satisfactory model

¢ caegoy  should mimic

A Property

:\_ ?,3> . J

C- Rare ™
C-Common - e.g. “Increasing number of

- N=2 .
. observations must cause crossover
N= 12 effect under property sampling
rosiiveonly  [rrespective of model parameters” etc
Positive & Negative



Scope

Weak generalisation

* The training set and evaluation set are drawn from the same generative model for the
same task

Strong generalisation
* The evaluation set falls outside the training distribution

* The model is evaluated on a different task

» Ultimately depends on your theory aligning with reality within the scope it is applied
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Take homes

Science is a garden of forking paths
Computational modelling is a way of keeping track of the forks

When we eschew this, we make consequential choices implicitly, or
blindly

Model evaluation can occur at all points on the path, not only at the level
of data

Model evaluation against data is often not what we care most about —yet
sociologically it is what we do
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